SemEval-2015 Task 1: Paraphrase and Semantic Similarity in Twitter (PIT)
نویسندگان
چکیده
In this shared task, we present evaluations on two related tasks Paraphrase Identification (PI) and Semantic Textual Similarity (SS) systems for the Twitter data. Given a pair of sentences, participants are asked to produce a binary yes/no judgement or a graded score to measure their semantic equivalence. The task features a newly constructed Twitter Paraphrase Corpus that contains 18,762 sentence pairs. A total of 19 teams participated, submitting 36 runs to the PI task and 26 runs to the SS task. The evaluation shows encouraging results and open challenges for future research. The best systems scored a F1-measure of 0.674 for the PI task and a Pearson correlation of 0.619 for the SS task respectively, comparing to a strong baseline using logistic regression model of 0.589 F1 and 0.511 Pearson; while the best SS systems can often reach >0.80 Pearson on well-formed text. This shared task also provides insights into the relation between the PI and SS tasks and suggests the importance to bringing these two research areas together. We make all the data, baseline systems and evaluation scripts publicly available.1
منابع مشابه
AMRITA_CEN$@$SemEval-2015: Paraphrase Detection for Twitter using Unsupervised Feature Learning with Recursive Autoencoders
We explore using recursive autoencoders for SemEval 2015 Task 1: Paraphrase and Semantic Similarity in Twitter. Our paraphrase detection system makes use of phrase-structure parse tree embeddings that are then provided as input to a conventional supervised classification model. We achieve an F1 score of 0.45 on paraphrase identification and a Pearson correlation of 0.303 on computing semantic s...
متن کاملEbiquity: Paraphrase and Semantic Similarity in Twitter using Skipgrams
We describe the system we developed to participate in SemEval 2015 Task 1, Paraphrase and Semantic Similarity in Twitter. We create similarity vectors from two-skip trigrams of preprocessed tweets and measure their semantic similarity using our UMBC-STS system. We submit two runs. The best result is ranked eleventh out of eighteen teams with F1 score of 0.599.
متن کاملFBK-HLT: An Effective System for Paraphrase Identification and Semantic Similarity in Twitter
This paper reports the description and performance of our system, FBK-HLT, participating in the SemEval 2015, Task #1 "Paraphrase and Semantic Similarity in Twitter", for both subtasks. We submitted two runs with different classifiers in combining typical features (lexical similarity, string similarity, word n-grams, etc) with machine translation metrics and edit distance features. We outperfor...
متن کاملMITRE: Seven Systems for Semantic Similarity in Tweets
This paper describes MITRE’s participation in the Paraphrase and Semantic Similarity in Twitter task (SemEval-2015 Task 1). This effort placed first in Semantic Similarity and second in Paraphrase Identification with scores of Pearson’s r of 61.9%, F1 of 66.7%, and maxF1 of 72.4%. We detail the approaches we explored including mixtures of string matching metrics, alignments using tweet-specific...
متن کاملHLTC-HKUST: A Neural Network Paraphrase Classifier using Translation Metrics, Semantic Roles and Lexical Similarity Features
This paper describes the system developed by our team (HLTC-HKUST) for task 1 of SemEval 2015 workshop about paraphrase classification and semantic similarity in Twitter. We trained a neural network classifier over a range of features that includes translation metrics, lexical and syntactic similarity score and semantic features based on semantic roles. The neural network was trained taking int...
متن کامل